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Where we ended last lecture
Programs define data and algorithms

Processes encapsulate the resources that program instances need to run
Threads represent the execution state of program instances

We use processes and threads to model concurrency and parallelism
Processes and KLTs can run in parallel on separate cores
Processes, KLTs, and ULTs can run concurrently on the same core

Collaboration
Threads: Implicitly shared memory (same AS)
Processes: explicitly shared memory (map AS regions to same pmem)

Today: How do processes communicate exactly, what problems arise,
and how to overcome them
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Interprocess Communication (IPC)

Processes/Threads frequently need to communicate with one another

Reasons for cooperating processes
Information sharing
share file/data-structure in memory
Computation speed-up
break larger task into subtasks Þ executed in parallel
Modularity
divide system into collaborating modules with clean interfaces

Interprocess Communication (IPC) allows exchanging data
Message passing explicitly send and receive information using system calls

e.g., POSIX message passing, pipes, sockets

Shared memory establishes a physical memory region that multiple
processes/threads can access

e.g., POSIX shared memory, shared memory-mapped files
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Message Passing vs. Shared Memory

Message Passing Shared Memory

We will discuss the implementation of shared memory later in this
lecture, for now just assume that it is possible.
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Interprocess Communication – Message Passing

Mechanism for processes to communicate/synchronize their actions

Message passing facilities generally provide operations to
send
receive

Implementation of communication link
hardware bus
shared memory
kernel memory
network interface card (NIC)
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Direct vs. Indirect Messages

Processes name each other explicitly when exchanging
direct messages

send(P, message) – send a message to process P
receive(Q, message) – receive a message from process Q

Indirect messages can be sent to and received from mailboxes
Each mailbox has a unique id
First communicating process creates mailbox, last destroys mailbox
Processes can communicate only if they share a mailbox

Mailbox sharing
P1, P2, and P3 share mailbox A Þ P1, sends; P2 and P3 receive
Who gets the message?
Allow a link to be associated with at most two processes?
Allow only one process at a time to execute a receive operation?
Allow the system to arbitrarily select the receiver?
(Sender is notified who received the message)
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Sender/Receiver Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous
Blocking send has the sender block until the message is received
Blocking receive has the receiver block until a message is available

Non-blocking is considered asynchronous
Non-blocking send has the sender send the message and continue
Non-blocking receive has the receiver receive a valid message or null

Can non-blocking sender communicate with non-blocking receiver?
Þ depends on buffering scheme
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Buffering

Messages are queued using different capacities while they are in-flight

Zero capacity – 0 messages/no queuing
Sender must wait for receiver (rendezvous)
message is transferred as soon as receiver becomes available
Þ no latency/no jitter

Bounded capacity – finite number and length of messages
Sender can send before receiver waits for messages
Sender can send while receiver still processes previous message
Sender must wait if link full (see UNIX “pipe” and “named pipe”)

Unbounded capacity

Sender never waits
Memory may overflow
Þ potentially very large latency/jitter between send and receive
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Example: Message Boxes in Mach (e.g., Mac OS X)

All communication is message based (even system calls are messages)

Every task gets two initial mailboxes (ports) at creation:
Kernel and Notify

Three system calls for messaging: msg send, msg receive, msg rpc

Further mailboxes can be allocated for process-to-process
communication via port allocate()

Flexible synchronization options: blocking, time-out, non-blocking

Maximal buffer capacity is 65536 messages

Every port is owned by a single process which is allowed to receive
messages (privilege can be transferred)

Mailbox-Set allows to receive from multiple mailboxes
port status() reports the number of messages in a mailbox
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Example: POSIX Message Queues

Create or open an existing message queue
mqd t mq open( const char *name, int oflag );

name is a path in the file system
Access permission is controlled through file system access permission

Send a message to the message queue
int mq send( mqd t md, const char *msg, size t len,

unsigned priority );

Receive the message with the highest priority in the message queue
int mq receive( mqd t md, char *msg, size t len,

unsigned *priority );

Register callback handler on message queue to avoid polling
int mq notify( mqd t md, const struct sigevent *sevp );

Remove message queue
int mq unlink ( const char *name );
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IPC through Shared Memory

Communicate through a region of shared memory
Between processes: Create shared region in one address space
Þ share with other processes

Threads “naturally” share address space

Every write to that memory region is now visible to all other processes

Hardware gurarantees that readers always read the most recent write

Communication semantics via shared memory are application specific
Can implement message passing via shared memory region

Using shared memory in a safe way and with high performance is tricky
Especially if many processes and many CPUs are involved
Þ due to cache coherency protocol

Especially if there are multiple writers
Þ due to race conditions
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Example: POSIX Shared Memory

Open or create a new POSIX shared memory object (returns handle)
int shm open( const char *name, int oflag, mode t mode );

Set size of shared memory region
ftruncate( smd, size t len );

Map shared memory object to address space
void* mmap( void* addr, size t len, [...], smd, [...] );

Unmap shared memory object from addres space
int munmap( void* addr, size t len );

Destroy shared memory object
int shm unlink( const char *name );

IPC Synchronization
Communication Models Message Passing Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 13/33



Sequential Memory Consistency

When communicating via shared memory we tend to assume
sequential consistency

Sequential consistency (SC) “The result of execution is as if all
operations were executed in some sequential order, and the operations
of each processor occurred in the order specified by the program.”
(Lamport)

Boils down to
All memory operations occur one at a time in program order
Ensures write atomicity

In reality, the compiler and the CPU re-order instructions to execution
order for more efficient execution

Without SC, multiple processes on multiple cores behave “worse” than
preemptive threads on a single core

May see different results than when interleaving on one core
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Memory Consistency Model

Unfortunately life is hard and modern CPUs are generally not
sequentially consistent because it would:

Complicate write buffers
Complicate non-blocking reads (speculative prefetch)
Make cache coherence more expensive

Compilers also do not generate code in program order
Re-arrange loops for better performance
Common subexpression elimination
Software pipelining

As long as a single thread accesses a memory location at a time this is
not a problem

Don’t try to access the same memory location with multiple
threads at the same time without proper synchronization!
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x86 Memory Consistency

x86 suports multiple consistency and caching models
Memory Type Range Registers (MTRR) specify consistency for ranges of
physical memory
Page Attribute Table (PAT) allows control on 4K page granularity

Caching model and memory consistency are tied together tightly
e.g., certain store instructions such as movnt bypass the cache and can be
re-ordered with other writes that do go through the cache

lock prefix make memory instructions atomic
All lock instructions are totally ordered
Other instructions cannot be re-ordered with locked ones

xchg instruction is always locked (although it doesn’t have the prefix)

Special fence instructions prevent re-ordering
lfence can’t be re-ordered with reads
sfence can’t be re-ordered with writes
mfence can’t be re-ordered with reads or writes

IPC Synchronization
Communication Models Message Passing Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 16/33



Synchronization
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Race Conditions
For now, let’s assume that we have sequential memory consistency

We still don’t have atomic memory transactions Þ we’re not done yet

Assume the following two code fragments are executed by two threads

Thread 1

count++;

Thread 2

count--;

After both threads finish, count should still have the same value as
before, right? What can possibly go wrong?

Thread 1 instructions

mov count A
add A 1
mov A count

Thread 2 instructions

mov count A
sub A 1
mov A count
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Race Conditions

Thread 1 instructions

mov count A
add A 1
mov A count

Thread 2 instructions

mov count A
sub A 1
mov A count

Possible execution order (assume we initialized count to 0)

mov count A ; count = 0
sub A 1 ; decrement register, count still 0
mov count A ; count = 0
add A 1 ; increment register, count still 0
mov A count ; write -1 back to count
mov A count ; write 1 back to count

Both threads have private registers
Þ separate A register exists for every thread (no problem here)

However: count is now 1 instead of the expected 0

We call this problem data race or race condition
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What about single-instruction add/subtract?

x86 allows single instruction add count 1

Are we safe now? No! Same race condition

Only interlocked operations will save the day!
But only if there is a single interlocked operation for your problem
Moreover they are more expensive than regular operations
Þ Your compiler will not generate them if you write count++

We need a general solution for the critical section (CS) problem!
Place count++ and count-- inside of a critical section CS
Protect critical section from concurrent execution

Thread 1

enter_critical_section( &CS );
count++;
leave_critical_section( &CS );

Thread 2

enter_critical_section( &CS );
count--;
leave_critical_section( &CS );
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Desired Properties for Solution to
Critical-Section Problem

Mutual Exclusion
At most one thread can be in the CS at any time

Progress
No thread running outside of the CS may block another thread from
getting in

If no thread is in the CS, a thread trying to enter will eventually get in
If no thread can enter CS Þ don’t have progress

Bounded Waiting
Once a thread starts trying to enter the CS, there is a bound on the
number of times other threads get in

You cannot make assumptions concerning relative speeds of threads

Don’t have bounded waiting if thread A waits to enter CS while B repeatedly
leaves and re-enters CS infinitely
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Disabling Interrupts

The kernel only switches threads on interrupts
Usually on the timer interrupt

Have per-thread “do not interrupt” (DNI) bit

On a single-core system we can just implement
enter critical section() sets DNI bit
leave critical section() clears DNI bit
With interrupts disabled, the scheduler is never called
Þ the thread runs until it reaches leave critical section()

+ Easy and convenient in the kernel

– Only works in single-core systems: Disabling interrupts on one CPU
does not affect other CPUs

– Only feasible in kernel: Don’t want to give user the power to turn off
interrupts. What if he never turns them on again?
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Lock Variables
Lets define a global variable lock

Only enter CS if lock is 0 and then set it to 1 when entering
Wait for lock to become 0 otherwise (busy waiting)

void enter_critical_section( volatile bool *lock )
{

while( *lock != 0 )
; // wait for lock to become 0

*lock = 1;
}

void leave_critical_section( volatile bool *lock )
{

*lock = 0;
}

CS problem solved?
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Lock Variables
Lets define a global variable lock

Only enter CS if lock is 0 and then set it to 1 when entering
Wait for lock to become 0 otherwise (busy waiting)

void enter_critical_section( volatile bool *lock )
{

while( *lock != 0 )
; // wait for lock to become 0

*lock = 1;
}

void leave_critical_section( volatile bool *lock )
{

*lock = 0;
}

CS problem solved?

NO! Same problem! Reading lock and setting lock to 1 not atomic!
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Atomic Operations
To make the lock variables approach work we need a way to test and
set the lock variable at the same time (atomically)
x86: XCHG can atomically exchange memory content with a register.
Lets assume this C interface for xchg:

bool xchg( volatile bool *lock, register bool A );
Exchanges register content with memory content
Returns previous memory content of lock

Now we can implement our critical section as a spinlock:
void enter_critical_section( volatile bool *lock )
{

while( xchg(lock, 1) == 1 ) // lock = 1 and return old value
; // repeat until old value is not 1

}

void leave_critical_section( volatile bool *lock )
{

*lock = 0;
}
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Spinlocks with Atomic Operations

Most modern CPUs provide atomic instructions with such semantics
Test memory word And Set value (TAS) (e.g., LDSTUB on SPARC V9)

Fetch and Add (e.g., XADD on x86)

Exchange contents of two memory words (SWAP, XCHG)
Compare content of one memory word and set to new value

Compare and Swap (e.g., CAS on SPARC V9 and Motorola 68k)
Compare and Exchange (e.g., CMPXCHG on x86)

Load-Link/Store-Conditional (LL/SC) (e.g., ARM, PowerPC, MIPS)

CS Problem solved?
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Spinlocks with Atomic Operations

Most modern CPUs provide atomic instructions with such semantics
Test memory word And Set value (TAS) (e.g., LDSTUB on SPARC V9)

Fetch and Add (e.g., XADD on x86)

Exchange contents of two memory words (SWAP, XCHG)
Compare content of one memory word and set to new value

Compare and Swap (e.g., CAS on SPARC V9 and Motorola 68k)
Compare and Exchange (e.g., CMPXCHG on x86)

Load-Link/Store-Conditional (LL/SC) (e.g., ARM, PowerPC, MIPS)

CS Problem solved?

3 Mutual Exclusion Only one thread can enter CS

3 Progress Only the thread within the CS hinders others to get in

7 Bounded Waiting No upper bound
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Spinlock Limitations

Spinlocks don’t work well if the lock is congested
If most of the time there is no thread in the CS when another tries to enter
then spinlocks are very easy and efficient
If the CS is large (always keep it small!) or many threads try to enter,
spinlocks might not be a good choice as all threads actively wait spinning

Spinlocks don’t work well if threads on different cores use the lock
The memory address is written at every atomic swap operation
Þ memory is kept coherent between cores which is expensive
(see tutorials for a MESI recapitulation and how to improve this issue)

Spinlocks can behave unexpectedly when processes are scheduled
with static priorities such as priority inversion

Assume two threads share a lock and are scheduled with static priorities
If the low-priority thread holds the lock, it will never be able to release it,
because it will never be scheduled!

Þ Nevertheless, spinlocks are widely used, especially in kernels
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Sleeping While Waiting

We have identified the busy part of busy waiting as an important
spinlock limitation

Busy waiting. . .
wastes resources when threads wait for locks
stresses the cache coherence protocol when used across cores
can cause the priority inversion problem

Idea for improvement
Threads should sleep on locks if they are occupied
Wake up threads one at a time when lock becomes free
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Semaphore

Introduce two syscalls that operate on integer variables that we call
semaphore in this context

wait( &s ): if s > 0: s-- and continue. Otherwise let caller sleep.
signal( &s ): if no thread is waiting: s++. Otherwise wake one up.

Initialize s to the maximum number of threads that may enter the CS at
any given time

wait corresponds to enter critical section()
signal corresponds to leave critical section()

A semaphore that is initialized to 1 is called binary semaphore,
mutex semaphore or just mutex

A mutex only admits one thread into the CS at a time

If you want to be specific about your semaphore allowing more than one
thread in the CS, you can call it counting semaphore
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Semaphore Implementation Considerations

The wait and signal calls need to be carefully synchronized

Otherwise using semaphores could result in a race condition between
checking and decrementing s

Moreover, signal loss can occur when waiting and waking threads up at
the same time

Consider a thread T1 checking s, which is 0
Before the thread goes to sleep, another thread T2 within the CS finishes
T2’s signal does not wake up any threads, as no thread is sleeping
After T2’s signal call finishes, T1 continues and begins sleeping

Þ One thread less than expected can now enter the CS
Þ If no other thread comes along, T1 will sleep forever
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Semaphore Implementation Considerations

Each semaphore is associated with a wake-up queue
Weak semaphores Wake up a random waiting thread on signal
Strong semaphores Wake up thread strictly in the order in which they
started waiting

CS problem finally solved?
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Semaphore Implementation Considerations

Each semaphore is associated with a wake-up queue
Weak semaphores Wake up a random waiting thread on signal
Strong semaphores Wake up thread strictly in the order in which they
started waiting

CS problem finally solved?

3 Mutual Exclusion Only one thread can enter CS for semaphores
initialized to 1

3 Progress Only the thread within the CS hinders others to get in

3 Bounded Waiting Strong semaphores guarantee bounded waiting
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Semaphore Implementation Considerations

Each semaphore is associated with a wake-up queue
Weak semaphores Wake up a random waiting thread on signal
Strong semaphores Wake up thread strictly in the order in which they
started waiting

CS problem finally solved?

3 Mutual Exclusion Only one thread can enter CS for semaphores
initialized to 1

3 Progress Only the thread within the CS hinders others to get in

3 Bounded Waiting Strong semaphores guarantee bounded waiting

Now every enter critical section() and
leave critical section() is a syscall

Syscalls are an order of magnitude slower than function calls
Can we do better?
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Fast User Space Mutex (futex)

Spinlocks
+ Quick when the wait-time is short
– Waste resources when the wait-time is long

Semaphores
+ Efficient when the wait-time is long
– Syscall overhead at every operation

Idea of Linux’ Fast User Space Mutex (futex)
There is a userspace and kernel component
Try to get into the CS with a userspace spinlock
If the CS is busy use a syscall to put thread to sleep
Otherwise just enter the CS with the now locked spinlock completely in
userspace
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Summary

There is often the need for processes or threads to communicate
Message passing facilities provide explicit send and receive functions to
exchange messages
Implicitly shared memory between threads or explicitly shared memory
between processes allows exchanging information by modifying shared
state

When communicating, data races need to be taken into account

Common techniques to synchronizes access to shared data include
Interlocked atomic operations
Spinlocks
Semaphores
Futexes
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Further Reading

Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition: Pages
119–134

On Consistency
Lamport: “How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs”
Adve, Gharachorloo: “Shared Memory Consistency Models: A Tutorial”
Intel 64 and IA-32 Architectures Developer’s Manual: Vol. 3A, §8.2
Owens, Sarkar, Sewell: “A Better x86 Memory Model: x86-TSO”

On Synchronization
Boehm, Adve: “You don’t know Jack about Shared Variables or Memory
Models”
David, Guerraoui, Trigonakis: “Everything you always wanted to know about
synchronization but were afraid to ask” (SOSP 2013)
Drepper: “Futexes are Tricky”
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